A graphical representation of relational formulae
with complementation

D. Cantoné A. Formisan® M. Nicolosi Asmundo E. G. Omodeb

The possibility to exploit map calculus for mechanical crasg can be grasped from [8],
where Tarski and Givant show how to reformulate most axi@mratstems of Set Theory as
equational theories based on a relational language deYoukmtifiers.

Map calculus [5] cannot represepér se an alternative to predicate calculus. As for ex-
pressive power, it corresponds in fact to a fragment of firdeologic endowed with only three
individual variables and with binary predicates only. Asdeductive power, it is semantically
incomplete: there are semantically valid equations whirehnat derivable within it. Moreover,
predicate logic has acquired such an unquestioned statues fatto standard as to make one
reluctant to adopt the map formalism in its stead, in spiténefgreater conciseness of the latter.

Nonetheless, map calculus can be applied in synergy withqate calculus, inside theorem
provers or proof assistants, as an inferential engine toskd in the activities of proof-search
and model building [4, 6, 1]. This calls for cross-trangatalgorithms between predicate logic
and map calculus. Moreover, to increase readability byatipy the immediate perspicuity
of graphics, it is useful to design algorithms allowing operépresent formulae in a visually
alluring way. In [2, 3] both problems have been addressed&éggmting an algorithm for trans-
lating formulae of dyadic predicate logic into map calculaad an algorithm for converting
map expressions into a graphical representation. Botlritligts are based on suitably defined
graphs; one of them is designed to treat existentially gfi@hiconjunctions of literals, the other
to treat map expressions containing the constructs ofieaktintersection, composition, and
conversion.

In this paper the techniques introduced in [2, 3] are furtixdended to the treatment of
formulae which involve the negation connective and of eggians involving the relational com-
plement construct. This allows us to get a graphical reptasen of any map expression, and to
process any formula of dyadic predicate logic with the aimgeifing an equivalent map equation.
In the latter case, the algorithm which we will present somes fails to find the sought trans-
lation even if it exists. This apparent drawback, which affected the earlier versions of the
algorithm, stems from an unsurmountable limiting resu]i famely the fact that no algorithm
can establish in full generality whether a given senteneedil variables is logically equivalent
to some other sentenceiirvariables, for any integer number> 1.

*Universita di Catania, emaitant one@ni . unict.it, nicolosi @m .unict.it
tUniversita di Perugia, email:or mi s@imi . uni pg. it
tUniversita di Trieste, emaieonodeo@ini ts. it

The enhanced techniques in this paper have been obtaineudliblgieg the notion of directed
multigraph (i.e., graphs allowing multiple edges and $mtips) associated with a formula or
with a map expression given in [2, 3]. Here, the nodes of thiignaph are labeled with sets of
variables instead of with single variables while edges abeled with sets of formulae. More-
over, a multigraph is seen as a collection of disjoint suplgsa calledcomponents. A relation
~ iIs introduced between edges and components of the mulkigdaguitively, such a relation
associates each disjunctive subformula with subgraphesepting the complements of its dis-
juncts. This allows to “unfold” the nesting of negations agjunctions in terms of conjunctions
(as well as complementations and unions in term of intei@ex), so as to apply the techniques
of [2, 3] to subgraphs/subformulae devoid of complemeatedind disjunction.

Graphical representation of £*-formulae

L*is an equational language devoid of variables. Its basieofignts are threeonstants 0, 1,

¢, map letters py, p2, ps, . . ., dyadic constructs) (mapintersection), U (mapunion), “;” (map

composition), and the monadic constructs(mapcomplementation) and ™~ (conversion). A map

expression is any termP, @, R, . .. built up from this signature in the usual manner. niap
equality is a writing of the formQ)=R, where both) and R are map expressions.

The languag& ™ is a variant of a first-order dyadic predicate languageatamic formula of
LT has either the formQy or the formQ=R, wherez, y stand for individual variables ar@, R
stand for map expressions. Here propositional connectimdsexistential/universal quantifiers
are employed as usual.

The techniques presented in [2, 3] for representing mapessppns and, more generally,
formulae of £* are extended here to cope with the negation connectiyeufd the relational
complement construct ().

Let » be a formula of£™ and lety be constructed out of atomic formulae of the farify.
Theny can be represented by a multigra@h = (V,,, E,,) built up in such a way that:

e (i, has at least one node ¥, for each distinct variable ip.

e G, is provided with a functioriNode labelling nodes with a subsets of variablesfand
with a function/Edge labelling each edge i, with either a set of map expressions or a
singleton containing a formula. The cardinality of the spias the multiplicity of the edge.

A node of G, is freeif its label contains no bound variables. Otherwise basind. If ¢ has the

form 2 Py, we often say that/,, represents the map expressién

As a simple example, consider the formyla= =P N Qy. ThenG,, is such that/,, =
{ug, vo}, the only edge iguy, vo) with multiplicity 2, IEdge((uo, vo)) = {P, Q}, INode(ug) =
{z} and[Node(vy) = {y}.

A disjunctive formulay (i.e., a formula of typer Py v zQw or of typex(P U Q)y) is rep-
resented by a multigraph with several components. One coamtdas a single edge labelled
by {¢} and is in relation~ with other components that, taken together, representubeaf
p. Forinstance, lep, = 2P; Qy V zR U Sw. G, is the directed multigraph with components
Gy, G1, G4 and Gy illustrated in Fig. 1. The component, is in relation~» with both G; and
G4, Wwhereagr is in relation~ with G5 (wherer, is the only bound node, implicit inP; Q).

oo @ {zP;QyV zRU Sw} @
{z, 2} \; 71/ {y, w}

G1: (:)—W} @ Ga: .—)‘ {]_%E} @
{z} i {y} {=} {w}

o5 (D@

{z} {y}

Figure 1: The multigrapld-,, associated witlp; = 2 P; Qy V zR U Sw.

The graph-fattening algorithm

The graph-fattening algorithm constructs a multigraphssociated to a map expressiBn It
extends the one presented in [3], which is unable to dealw#p complementation and disjunc-
tion. Such a multigraph has two distinct nodgsands; (called source and sink) representing
the two arguments oP (seen as the atomic formutaPy). The construction of7, s, ands;
is carried out by starting with a grapgh consisting of a single edge fromy to s;, such that
[Edge((so,s1)) = {P}. Then,G is “expanded” by unfolding the constructs 6f. For instance,
let the disjoint multigraphss’, s;, s; andG”, sg, s represent) and R, respectively. Then, as
regards composition and intersection:
o (3, 50, 51 representing; R is obtained fromG' andG” by ‘gluing’ togethers) ands; to form

a single node, and by putting = s; ands; = s7;
e G, 50,51 representing)N R is obtained fromG’ andG” by gluing s to s; to form s, ands/

to s} to forms;.
Here, for space limits, we avoid describing the treatmerthefremaining constructs. In that
cases the representation exploits the relatioand graphs with multiple components.

The graph-thinning algorithm

The aim of the graph-thinning algorithm is to determine, ol given formulay of £*, an
equivalent formulay where all the quantifiers have been eliminated. A simplesigarof this
problem has been analyzed in [3], by designing an algorithat bboks for a quantifier-free
formula of £L* equivalent to a given existentially quantified conjunctairiterals of the form
xPy. The refined algorithm we introduce here transforms thetifgunula o by operating on
its subformulae, in a bottom-up manner, with the purposeeoivthg, at the same time, both
andG,. Notice that our algorithm may fail in this task. Howeveistdoes not mean thatdoes
not admit a quantifier-free translation i1, but it simply witnesses the incompleteness of our
algorithm in solving a problem which is, in fact, undecidabi full generality.

The construction process ¢fandG), is carried out through a bottom-up visit of the syntax
tree ofp. G is obtained by first constructing the graph componentsivelab the innermost
subformulae ofy and then gluing them together using the rulescatapse (construction of

3

maximal conjunctions of atomic subformulae), radrmalization, of fusion of multiple edges,
of bypass andbigamy. At the same time, the formula is derived fromy by replacing each
subformula ofy with the formula represented by the corresponding compaofefi,,. Because
of the mentioned way of rendering negation through theigeiat:, applications of simplification
and gluing rules can be restricted to conjunctions of atdarimulae only. Disjunctions likg; v
...Vp, are putinthe form-(—=S;A...A—=5,,). Inturn, the edge af labeled by-(—51A. . .A—5,)
is put in relation~ with the components af representing thg;s.

Conclusion and Future Work

We have enhanced preexisting algorithms for translatiragatyfirst-order logic into map cal-
culus which rely on a specific graph representation of mapesgons. As an outcome, we are
able to deal with map expressions and with formulae contgithe relational complement con-
struct and the negation connective. We plan to further exdnétme graph-thinning algorithm by
improving the bypass and bigamy rules (making them moredilda case of nesting of quan-
tifiers) and by incorporating into the algorithm rules thapleit semantical information, such
as functionality of maps (i.e., the knowledge that an exgoesP is single-valued). This kind
of rules could enable an otherwise unachievable translatfofirst attempt in the implemen-
tation of a proof-assistant based on the graph represemtatimap expressions has been done
in[7]. In that case the algorithms described in [3] have begiemented on top of the attributed
graph-transformation systema&. In order to validate the approach described in this paper, a
implementation of the new algorithms is due (as a standedtiool or in integration with standard
theorem provers for first-order logic). This representsallehging topic for further research.

References

[1] Belinfante, J.G.F. (2000). Godel's algorithm for datrmation. In D.McAllester, edProc. of
CADE’ 00.

[2] Cantone, D., Cavarra, A., and Omodeo, E. G. (1997). Ostentially quantified conjunctions of
atomic formulae ofZT. In M. P. Bonacina and U. Furbach, e@spoc. of FTP' 97.

[3] Cantone, D., Formisano, A., Omodeo, E. G., and Zarba, G2@3) Compiling dyadic first-order
specifications into map algebra. TCS 293(2):447-475.

[4] Formisano, A., Nicolosi Asmundo, M. (2006). An efficiamtiational deductive system for proposi-
tional non-classical logicsl. Applied Non-Classical Logics, 16(3-4):367-408.

[5] Formisano, A., Omodeo, E. G., and Temperini, M. (2000pals and benchmarks for automated map
reasoningJournal of Symbolic Computation, 29(2):259-297.

[6] Formisano, A., Omodeo, E. G., and Temperini, M. (20013tincting equational set-reasoning with
Otter. In R. Gorég, A. Leitsch, and T. Nipkow, ed&oc. of IJCAR 01.

[7] Formisano, A., and Simeoni, M. (2001). AnG& application supporting visual reasoning. In L.
Baresi and M. Pezze, ed®roc. of GT-VMT 01 (ICALP 2001). ENTCS, 50(3).

[8] Tarski, A. and Givant, S. (1987)A formalization of Set Theory without variables, vol. 41 of Collo-
quium Publications. American Mathematical Society.

