
A graphical representation of relational formulae
with complementation

D. Cantone∗ A. Formisano† M. Nicolosi Asmundo∗ E. G. Omodeo‡

The possibility to exploit map calculus for mechanical reasoning can be grasped from [8],
where Tarski and Givant show how to reformulate most axiomatic systems of Set Theory as
equational theories based on a relational language devoid of quantifiers.

Map calculus [5] cannot representper se an alternative to predicate calculus. As for ex-
pressive power, it corresponds in fact to a fragment of first order logic endowed with only three
individual variables and with binary predicates only. As for deductive power, it is semantically
incomplete: there are semantically valid equations which are not derivable within it. Moreover,
predicate logic has acquired such an unquestioned status ofde facto standard as to make one
reluctant to adopt the map formalism in its stead, in spite ofthe greater conciseness of the latter.

Nonetheless, map calculus can be applied in synergy with predicate calculus, inside theorem
provers or proof assistants, as an inferential engine to be used in the activities of proof-search
and model building [4, 6, 1]. This calls for cross-translation algorithms between predicate logic
and map calculus. Moreover, to increase readability by exploiting the immediate perspicuity
of graphics, it is useful to design algorithms allowing one to represent formulae in a visually
alluring way. In [2, 3] both problems have been addressed by presenting an algorithm for trans-
lating formulae of dyadic predicate logic into map calculus, and an algorithm for converting
map expressions into a graphical representation. Both algorithms are based on suitably defined
graphs; one of them is designed to treat existentially quantified conjunctions of literals, the other
to treat map expressions containing the constructs of relational intersection, composition, and
conversion.

In this paper the techniques introduced in [2, 3] are furtherextended to the treatment of
formulae which involve the negation connective and of expressions involving the relational com-
plement construct. This allows us to get a graphical representation of any map expression, and to
process any formula of dyadic predicate logic with the aim ofgetting an equivalent map equation.
In the latter case, the algorithm which we will present sometimes fails to find the sought trans-
lation even if it exists. This apparent drawback, which alsoaffected the earlier versions of the
algorithm, stems from an unsurmountable limiting result [8], namely the fact that no algorithm
can establish in full generality whether a given sentence inn+1 variables is logically equivalent
to some other sentence inn variables, for any integer numbern > 1.

∗Università di Catania, email:cantone@dmi.unict.it, nicolosi@dmi.unict.it
†Università di Perugia, email:formis@dmi.unipg.it
‡Università di Trieste, email:eomodeo@units.it

1

The enhanced techniques in this paper have been obtained by enriching the notion of directed
multigraph (i.e., graphs allowing multiple edges and self-loops) associated with a formula or
with a map expression given in [2, 3]. Here, the nodes of the multigraph are labeled with sets of
variables instead of with single variables while edges are labeled with sets of formulae. More-
over, a multigraph is seen as a collection of disjoint subgraphs, calledcomponents. A relation
 is introduced between edges and components of the multigraph. Intuitively, such a relation
associates each disjunctive subformula with subgraphs representing the complements of its dis-
juncts. This allows to “unfold” the nesting of negations anddisjunctions in terms of conjunctions
(as well as complementations and unions in term of intersections), so as to apply the techniques
of [2, 3] to subgraphs/subformulae devoid of complementation and disjunction.

Graphical representation of L+-formulae

L×is an equational language devoid of variables. Its basic ingredients are threeconstants 0, 1,
ι , map letters p1, p2, p3, . . ., dyadic constructs∩ (map intersection), ∪ (mapunion), “;” (map
composition), and the monadic constructs(mapcomplementation) and⌣ (conversion). A map
expression is any termP,Q,R, . . . built up from this signature in the usual manner. Amap
equality is a writing of the formQ=R, where bothQ andR are map expressions.

The languageL+ is a variant of a first-order dyadic predicate language: anatomic formula of
L+ has either the formxQy or the formQ=R, wherex, y stand for individual variables andQ,R
stand for map expressions. Here propositional connectivesand existential/universal quantifiers
are employed as usual.

The techniques presented in [2, 3] for representing map expressions and, more generally,
formulae ofL+ are extended here to cope with the negation connective (¬) and the relational
complement construct ().

Let ϕ be a formula ofL+ and letϕ be constructed out of atomic formulae of the formxPy.
Thenϕ can be represented by a multigraphGϕ = (Vϕ, Eϕ) built up in such a way that:
• Gϕ has at least one node inVϕ for each distinct variable inϕ.
• Gϕ is provided with a functionlNode labelling nodes with a subsets of variables ofϕ, and

with a functionlEdge labelling each edge inEϕ with either a set of map expressions or a
singleton containing a formula. The cardinality of the set equals the multiplicity of the edge.

A node ofGϕ is free if its label contains no bound variables. Otherwise it isbound. If ϕ has the
form xPy, we often say thatGϕ represents the map expressionP .

As a simple example, consider the formulaϕ1 = xP ∩ Qy. ThenGϕ1
is such thatVϕ1

=
{u0, v0}, the only edge is(u0, v0) with multiplicity 2, lEdge((u0, v0)) = {P ,Q}, lNode(u0) =
{x} andlNode(v0) = {y}.

A disjunctive formulaϕ (i.e., a formula of typexPy ∨ zQw or of typex(P ∪ Q)y) is rep-
resented by a multigraph with several components. One component has a single edge labelled
by {ϕ} and is in relation with other components that, taken together, represent the dual of
ϕ. For instance, letϕ2 = xP ;Qy ∨ zR ∪ Sw. Gϕ2

is the directed multigraph with components
G0, G1, G2 andG3 illustrated in Fig. 1. The componentG0 is in relation with bothG1 and
G2, whereasG1 is in relation with G3 (wherer1 is the only bound node, implicit inxP ;Qy).

2

G0: u0 v0

G1: u1 v1 G2: u2 v2

G3: u3 r1 v3

{xP ;Qy ∨ zR ∪ Sw}

{P ;Q}

{P} {Q}

{R,S}

{x, z} {y, w}

{x} {y} {w}{z}

{y}{x}

Figure 1: The multigraphGϕ2
associated withϕ2 = xP ;Qy ∨ zR ∪ Sw.

The graph-fattening algorithm

The graph-fattening algorithm constructs a multigraphG associated to a map expressionP . It
extends the one presented in [3], which is unable to deal withmap complementation and disjunc-
tion. Such a multigraph has two distinct nodess0 ands1 (called source and sink) representing
the two arguments ofP (seen as the atomic formulaxPy). The construction ofG, s0, ands1
is carried out by starting with a graphG consisting of a single edge froms0 to s1, such that
lEdge((s0, s1)) = {P}. Then,G is “expanded” by unfolding the constructs ofL×. For instance,
let the disjoint multigraphsG′, s′0, s

′
1 andG′′, s′′0, s

′′
1 representQ andR, respectively. Then, as

regards composition and intersection:
• G, s0, s1 representingQ;R is obtained fromG′ andG′′ by ‘gluing’ togethers′1 ands′′0 to form

a single node, and by puttings0 = s′0 ands1 = s′′1;
• G, s0, s1 representingQ∩R is obtained fromG′ andG′′ by gluings′′0 to s′0 to form s0, ands′′1

to s′1 to form s1.
Here, for space limits, we avoid describing the treatment ofthe remaining constructs. In that
cases the representation exploits the relation and graphs with multiple components.

The graph-thinning algorithm

The aim of the graph-thinning algorithm is to determine, outof a given formulaϕ of L+, an
equivalent formulaψ where all the quantifiers have been eliminated. A simpler version of this
problem has been analyzed in [3], by designing an algorithm that looks for a quantifier-free
formula ofL+ equivalent to a given existentially quantified conjunctionof literals of the form
xPy. The refined algorithm we introduce here transforms the input formulaϕ by operating on
its subformulae, in a bottom-up manner, with the purpose of deriving, at the same time, bothψ
andGψ. Notice that our algorithm may fail in this task. However, this does not mean thatϕ does
not admit a quantifier-free translation inL+, but it simply witnesses the incompleteness of our
algorithm in solving a problem which is, in fact, undecidable in full generality.

The construction process ofψ andGψ is carried out through a bottom-up visit of the syntax
tree ofϕ. Gψ is obtained by first constructing the graph components relative to the innermost
subformulae ofϕ and then gluing them together using the rules ofcollapse (construction of

3

maximal conjunctions of atomic subformulae), ofnormalization, of fusion of multiple edges,
of bypass andbigamy. At the same time, the formulaψ is derived fromϕ by replacing each
subformula ofϕ with the formula represented by the corresponding component of Gψ. Because
of the mentioned way of rendering negation through the relation , applications of simplification
and gluing rules can be restricted to conjunctions of atomicformulae only. Disjunctions likeβ1∨
. . .∨βn are put in the form¬(¬β1∧. . .∧¬βn). In turn, the edge ofG labeled by¬(¬β1∧. . .∧¬βn)
is put in relation with the components ofG representing theβis.

Conclusion and Future Work

We have enhanced preexisting algorithms for translating dyadic first-order logic into map cal-
culus which rely on a specific graph representation of map expressions. As an outcome, we are
able to deal with map expressions and with formulae containing the relational complement con-
struct and the negation connective. We plan to further enhance the graph-thinning algorithm by
improving the bypass and bigamy rules (making them more liberal in case of nesting of quan-
tifiers) and by incorporating into the algorithm rules that exploit semantical information, such
as functionality of maps (i.e., the knowledge that an expressionP is single-valued). This kind
of rules could enable an otherwise unachievable translation. A first attempt in the implemen-
tation of a proof-assistant based on the graph representation of map expressions has been done
in [7]. In that case the algorithms described in [3] have beenimplemented on top of the attributed
graph-transformation system AGG. In order to validate the approach described in this paper, an
implementation of the new algorithms is due (as a stand-alone tool or in integration with standard
theorem provers for first-order logic). This represents a challenging topic for further research.

References
[1] Belinfante, J.G.F. (2000). Gödel’s algorithm for class formation. In D.McAllester, ed,Proc. of

CADE’00.

[2] Cantone, D., Cavarra, A., and Omodeo, E. G. (1997). On existentially quantified conjunctions of
atomic formulae ofL+. In M. P. Bonacina and U. Furbach, eds,Proc. of FTP’97.

[3] Cantone, D., Formisano, A., Omodeo, E. G., and Zarba, C. G. (2003) Compiling dyadic first-order
specifications into map algebra. TCS 293(2):447-475.

[4] Formisano, A., Nicolosi Asmundo, M. (2006). An efficientrelational deductive system for proposi-
tional non-classical logics.J. Applied Non-Classical Logics, 16(3-4):367-408.

[5] Formisano, A., Omodeo, E. G., and Temperini, M. (2000). Goals and benchmarks for automated map
reasoning.Journal of Symbolic Computation, 29(2):259-297.

[6] Formisano, A., Omodeo, E. G., and Temperini, M. (2001) Instructing equational set-reasoning with
Otter. In R. Goré, A. Leitsch, and T. Nipkow, eds,Proc. of IJCAR’01.

[7] Formisano, A., and Simeoni, M. (2001). An AGG application supporting visual reasoning. In L.
Baresi and M. Pezzè, eds.,Proc. of GT-VMT’01 (ICALP 2001). ENTCS, 50(3).

[8] Tarski, A. and Givant, S. (1987).A formalization of Set Theory without variables, vol. 41 of Collo-
quium Publications. American Mathematical Society.

4

